Rhythmic Movement Training
International (RMTi) Curricula

Evidence-Based Rationale and
Relevance to Physical Therapy Practice

by Sonia Story

Physical Therapists examine individuals with impairment, functional limitation, and
disability. Physical Therapists help alleviate these challenges by implementing therapeutic
interventions and educating their patients about the process of therapy.

In the Rhythmic Movement Training (RMT/RMTi) courses, we teach neurodevelopmental
movements. Neurodevelopmental movements are the innate developmental, rhythmic,
primitive reflex, and postural reflex movements of early infancy and childhood. Physical
Therapists utilize these neurodevelopmental movements to improve balance, posture, muscle
strength, stamina, coordination, and overall function for patients of all ages.

Primitive and Postural Reflexes

The Rhythmic Movement Training courses give theoretical and experiential learning of primitive and postural reflex patterns to use in both assessment and intervention.

Innate infant reflexes have long been used as signs for determining the health or dysfunction of the central nervous system (CNS) (Fiorentino, M., 1973). The infant reflex movements are crucial for development; they fuel brain growth and build the neuro-sensory-motor skills needed to progress to an upright, walking toddler. These same neuro-sensory-motor skills are the foundation for balance, posture, strength, speech, social-emotional skills, and future learning. Because of their importance to development, assessing the primitive infant reflexes is part of newborn neurological exams (Fletcher, M. A., 1973).

Though primitive reflex movement patterns are present in normally developing infants, ideally most are integrated (inhibited) by the end of the first year, as the brain and body mature and volitional movements and postural reflexes replace primitive reflexive movements. Children and adults with unintegrated, retained primitive reflexes and underdeveloped postural reflexes often experience mild to severe obstacles in functioning and learning. Sensory and motor
reflex patterns beyond infancy inform assessment of how well the CNS is functioning, as well as intervention.

Consequences of Retained Primitive Reflexes

Primitive reflexes, located at the brainstem level, are stereotypical movement patterns that in infancy are integrated or inhibited as the cortex develops and overrides reflex expression. However, for many children these reflex patterns are not fully integrated or inhibited. Even when an individual does attain fully integrated primitive reflexes, the movement patterns are still underlying at the brainstem level and may reemerge when the higher brain levels are damaged in cases such as brain injury, stroke, or dementia. The persistence of primitive reflexes beyond infancy is associated with developmental delay as well as neurological and physical challenges. Retained reflexes also are a reliable predictor of emotional, behavioral, and cognitive challenges across the age span.

For example, retained primitive reflexes are common in children with challenges such as Developmental Coordination Disorder (DCD) (Goddard Blythe, S., 2009), Attention-Deficit Hyperactivity Disorder (ADHD) (Konicarova, J., Bob, P., Raboch, J., 2013), and dyslexia (McPhillips, M., Jordan-Black, J. A., 2007), and in adults with schizophrenia (Hyde, T. M., Goldberg, T. E., Egan, M. F., Lener, M. C., Weinberger, D. R., 2007).

Additionally, retained primitive reflexes are commonly found in frontal lobe disease, Parkinson’s disease, dementias, and advanced HIV infection (McGee, S. R., 2001).

Another recent example shows that the reappearance of primitive oral-facial reflexes in nursing home patients was associated with challenges in eating function, risk of malnutrition, and risk of developing aspiration pneumonia (Hobo, K., Kawase J., Tamura, F., Groher, M., Kikutani, T., Sunakawa, H., 2014).

Retained primitive reflexes and underdeveloped postural reflexes correlate with abnormal muscle tone, poor postural control, and poor coordination (Fiorentino, M., 1972; Goddard, S., 2005). Extensive studies explore this relationship in individuals with cerebral palsy and with other known neurological conditions such as stroke. Retained reflexes less severe than typical in cases of brain injury can also drive less severe changes in muscle tone and postural control; these reflex-driven tonal and postural changes may still significantly affect function (Kohen-Raz, R., 1986; Goddard, S., 2005).

Research that Supports the Use of Reflex Integration Programs

Looking at specific retained reflex patterns and their consequences helps us understand why it is important to address retained reflex patterns. In addition, when we do movements to develop and mature the reflexes, we see significant improvements in functioning.

Tonic Labyrinthine Reflex (TLR)

When retained, TLR can cause weak muscle tone, exaggerated muscle tone, tone that fluctuates with head movement, center of balance that changes with head position, visual dysfunction, impaired
Asymmetrical Tonic Neck Reflex (ATNR)

A 2012 study found evidence of ATNR reemergence following stroke. When voluntary neck rotation elicited ATNR, the authors concluded that ATNR expression likely utilizes “a common neuroanatomical link” with “flexion synergy—the abnormal torque coupling of elbow flexion with shoulder abduction—resulting in loss of independent joint control in stroke patients.” (Ellis, M. D., Drogos, J., Carmona, C., Keller, T., Dewald, J. P. A., 2012)

A retained ATNR may cause various difficulties for the growing infant and child: lack of normal hand-to-mouth and hand-to-hand play, which can result in imbalances in oral sensitivity and poor bilateral, symmetrical upper extremity use; poor control of eye muscles resulting in poor visual perception (Bly, L., 1983); and poor ability to cross midline and poor laterality (Goddard, S., 2005).

In addition, a retained ATNR can set the stage for scoliosis (Bly, L., 1983) and may cause further difficulty with specialized movement tasks such as handwriting and use of tools (Goddard, S., 2005). A retained ATNR is also significantly associated with ADHD symptoms (Taylor, M., Houghton, S., Chapman, E., 2004; Konicarova, J; Bob, P., 2013), and reading challenges (McPhillips, M., Hepper, P. G., Mulhern, G., 2000; Jordan-Black, J. A., 2004). Intervention programs based on replicating innate infant movements, including ATNR reflex patterns, showed significantly greater improvement in reading and writing speed for the experimental group (McPhillips, M., Hepper, P. G., Mulhern, G., 2000), and in a related study, correlated with higher reading and mathematics scores (Jordan-Black, J. A., 2004).

Symmetrical Tonic Neck Reflex (STNR)

STNR, when retained, may cause difficulties with visual skills and learning challenges (Goddard, S., 2005). Utilizing movements to integrate STNR is highly useful in overcoming the symptoms of ADHD (O’Dell, N., Cook, P. A., 2004). In her book *Reflexes, Learning and Behavior*, Sally Goddard highlights studies focusing on STNR integration that show improvement in learning as well as reduction of hyperactivity (Goddard, S., 2005).

It is worthwhile to note that ADHD symptoms—linked to both a retained ATNR and a retained STNR—also are significantly associated with balance deficits. Balance deficits were measured even in individuals with ADHD who have no history of medication and no neurological disease present (Konicarova, J., Bob, P., Raboch, J., 2014). In clinical situations, we see that when we mature infant reflexes, balance skills improve measurably. Recent research also shows that improving balance ameliorates anxiety and increases self-esteem (Bart, O., Bar-Haim, Y., Weizman, E., Levin. M., Sadeh, A., Mintz, M., 2009).

Moro Reflex

When the Moro Reflex fails to mature, we observe numerous sensory processing challenges and an underlying state of stress, as the nervous system remains in a fight–or–flight pattern (Goddard, S., 2005). In addition, a retained Moro Reflex is associated with ADHD symptoms and learning challenges (Taylor, M., Houghton, S., Chapman, E., 2004).
Combined Reflexes

In a study implementing corrections for several retained infant reflexes, children showed significant improvement in reading fluency and reduction of headaches (Wahlberg, T., Ireland, D., 2005).

In another study, oculo-motor functioning and reading skills improved as retained reflexes were corrected (Bein-Wierzbinski, W., 2001, as quoted in Goddard, S., 2005).

Rationale for Addressing Retained Reflexes and the Problems that Arise Subsequent to the Retained Reflexes

Physical Therapists using neurodevelopmental movements with their patients also are reporting measurable beneficial results. The basic premise supporting the use of neurodevelopmental movements for Physical Therapists is that the brain recognizes and responds to these innate movements whose original function is to support brain and body development. These innate neurodevelopmental movements stimulate and develop important neuro-sensory-motor and brain pathways as a regular course of development, and we can use these movements at any age to create effects similar to those we see in infancy (Blomberg, H., Dempsey, M., 2011).

It is reasonable that these innate neurodevelopmental movements could help mature the brain and sensory systems beyond infancy. The theory of increased brain maturity through use of the neurodevelopmental movements beyond infancy is the explanation given for the successes of Harald Blomberg, MD, one of the developers of the Rhythmic Movement Training program (RMT).

RMT uses a combination of primitive and postural reflex integration protocols, plus infant rhythmic and developmental movements. In his work applying RMT with children with ADHD, developmental delay, and learning challenges, Blomberg witnessed immense improvements in function and often a reversal of ADHD symptoms and learning challenges (Blomberg, H., Dempsey, M., 2011).

The fact that many studies conclude that symptoms of ADHD arise from a delay of normal brain maturation (Sripada, C.S., Kessler, D., Angstadt, M., 2014; Rubia, K., 2007) gives further support to the use of innate neurodevelopmental movements as a key factor in promoting brain maturation and creating successful outcomes for this condition.

Svetlana Masgutova, developer of the Masgutova Neuro-Sensory-Motor Reflex Integration program (MNRI), also has experienced beneficial outcomes for children with challenges by using the innate primitive and postural reflex movement patterns (Masgutova, S., Akhmatova, N., Sadowska, L., Shackleford, P., Akhmatov, E., 2016).

Plausible Mechanism for Brain Maturation and Connectivity

It is helpful to understand a plausible mechanism underlying the increased brain and neuro-sensory-motor maturity fueled by neurodevelopmental movements. In his book *Spark*, John Ratey, MD, cites several studies showing that movement activity stimulates BDNF—Brain Derived Neurotrophic Factor (Ratey, J. J., 2008). BDNF also stimulates myelin formation repair after stroke (Ramos-Cejudo, J., Gutiérrez-Fernández, M., Otero-Ortega, L., Rodríguez-Frutos, B., Fuentes,
Myelin, the fatty sheath surrounding neuronal axons, is essential for normal brain function. The development of the myelin sheath enables rapid, effective communication across the brain and is thought to be involved in higher order cognitive functioning. We now know, through quantitative measures, that myelination increases greatly in the first three years of life in the normal course of development (Carmody, D. P., Dunn, S. M., Boddie-Willis, A. S., DeMarco, J. K., Lewis, M., 2004). Learning a new motor skill also increases myelin. Furthermore, the rate of learning correlates significantly with increased myelin density (Sampaio-Baptista, C., Krainitchev, A. A., Foxley, S., Schlagheck, T., Scholz, J., Jabbdii, S., DeLuca, G. C., Miller, K. L., Taylor, A., Thomas, N., Kleim, J., Sibson, N. R., Bannerman, D., Johansen-Berg, H., 2013). We can reason that the enormous changes in myelination during infancy are stimulated at least in part by the innate movements concurrent in normal development as an infant learns to be more skillful with motor tasks.

Common Disorders Linked to Sensorimotor Abnormalities

Understanding that the innate neurodevelopmental movements of infancy are fueling brain growth and connectivity helps us grasp why they may be highly beneficial for a wide variety of conditions involving sensorimotor challenges, including Developmental Coordination Disorder (DCD), ADHD, sensory processing deficits, stroke, autism spectrum disorder (ASD), anxiety, traumatic brain injury, Parkinson’s disease, Down syndrome, and more.

We often see retained primitive reflexes and balance issues in individuals with DCD, ADHD, stroke, anxiety, ASD, and many other conditions. Therefore, therapists using neurodevelopmental movement tools may contribute greatly to helping individuals with these and similar disorders. Recent studies show that motor coordination challenges are present in a high majority of individuals with ASD and “findings indicate that motor impairment constitutes a core characteristic of ASD” (Hilton, C. L., Zhang, Y., Whilte, M. R., Klohr, C. L., Constantino, J., 2012, emphasis added). Using innate neurodevelopmental movements may be of huge significance to individuals suffering from ASD, especially considering that autism spectrum disorder is now recognized as highly associated with mild to severe movement abnormalities.

Using a computerized posturographic procedure, children with autism were found to have postural control patterns that differed from normal children (Kohen-Raz, R., Volkmar, F. R., Cohen, D. J., 1992). Delays in motor functioning related to reflexes and development also are seen as reliable early indicators for risk of autism (Flanagan, J. E., Landa, R., Bhat, A., Bauman, M., 2012; Teitelbaum, P., Teitelbaum, O. B., Fryman, J., Maurer, R., 2002). In a recent *Physical Therapy* journal, subtitled “Current Perspectives on Motor Functioning in Infants, Children and Adults with Autism Spectrum Disorders,” the authors state: “This article aims to highlight and support our perspective that motor abnormalities seen in individuals with ASDs, if more widely recognized, may affect ASD interventions and eventual outcomes.” (Bhat, A., Landa, R., Galloway, J. C., 2011)
Consistent with previous studies, we see that application of primitive reflex patterns for individuals with ASD results in building a foundation that leads to better function. For example, application of the Masgutova Neuro-Sensory-Motor Reflex Integration method (MNRI) for individuals with ASD showed significant improvement in the children's cognitive abilities, as well as in emotional regulation, self-awareness, social interaction, stress resilience, physical health, and speech (Masgutova, S., Akhmatova, N., Sadowska, L., Shackleford, P., Akhmatov, E., 2016).

The RMTi Curricula Overview

In the Rhythmic Movement Training courses we combine an in-depth set of neurodevelopmental movements tools to integrate primitive and postural reflexes for the purpose of developing skills and boosting overall functioning.

Part One: Innate Sensory-Motor Reflex Patterns

For each reflex listed, we teach:

» Original stimulus for the reflex pattern
» Original motor pattern of the reflex
» Original functions of the reflex in infancy
» How to assess for retained or abnormal reflex activity
» How to recognize various compensatory behaviors and consequences that may relate to a specific retained reflex pattern
» Various movement and tactile interventions to mature and integrate the reflex

Rhythmic Movement Training, Level 1

Tonic Labyrinthine Reflex
Landau Reflex
Amphibian Reflex
Symmetrical Tonic Neck Reflex
Spinal Galant Reflex
Babinski Reflex

Rhythmic Movement Training, Level 2

Fear Paralysis Reflex
Moro Reflex
Tendon Guard Response

Rhythmic Movement Training, Level 3

Moro Reflex
Asymmetrical Tonic Neck Reflex
Headrighting Reflexes
Hand-Mouth Babkin Reflex
Palmar Grasp Reflex
Hands Pulling (Pull-to-Sit) Reflex

The RMTi curricula offer the therapist a variety of intervention strategies and a range of appropriate tools for all ages.

Part Two: Innate Rhythmic and Developmental Movement Patterns

In the Rhythmic Movement Training courses, in addition to reflex assessment and integration protocols, we teach specific developmental and rhythmic movements—the innate, self-initiated rhythmic movements of infancy—that provide tactile, vestibular, proprioceptive, rhythmic-motor, and rhythmic-auditory input. Many of these rhythmic movements involve weight shifts that are important in developing proper upright posture, balance, and gait.
In Sweden, Kerstin Linde pioneered the use of the innate rhythmic movements to help individuals with developmental and functional challenges. Harald Blomberg, MD, a psychiatrist and student of Linde, found the rhythmic movements especially helpful for his adult psychiatric patients with mental illness (Blomberg, H., 2007). Psychiatric patients using the rhythmic movements showed more interest in social activities, were less irritable, and had a greater sense of well-being (Blomberg, H., 2007). Blomberg’s results with these adult patients are consistent with findings that show that childhood neuromotor dysfunction is a risk factor for adult schizophrenia (Murray, G. K., Jones, P. B., Moilanen, K., Veijola, J. Miettunen, J., Cannon, T.D., Isohanni, M., 2006). Blomberg later used a combination of rhythmic movements and reflex integration to help children with learning and behavior challenges (Blomberg, H., Dempsey, M., 2011).

There is promising preliminary evidence showing that rhythmic and primitive reflex motor intervention can reduce muscle tension, diminish sensory processing challenges, and improve balance, coordination, and physical function (Blomberg, H., Dempsey, M., 2011; Gazca, M., 2012).

Rhythmic sensory input itself has been beneficial for helping with gait in patients with Parkinson’s disease (Kadivar, Z., Corcos, D., Foto, J., Hondzinski, J., 2011) and following stroke (Hayden, R., Clair, A., Johnson, G., Otto, D., 2009). Rhythmic sensory input has been effective for helping children exposed to trauma, most likely by means of regulation of the brainstem (Perry, B., 2006). Neurodevelopmental rhythmic movements have also played a part in successful rehabilitation after stroke (Doidge, N., 2007).

Conclusion

The evidence suggests that through the use of innate neurodevelopmental movements—the primitive and postural reflexes plus the developmental and rhythmic movements of infancy—Physical Therapists can create better outcomes for their patients. Utilizing this inborn sensory-motor template of movements fuels brain growth, connectivity, and sensory maturity. These special, innate movements repeatedly show effectiveness in clinical and research settings. And because of their fundamental importance in human life, the neurodevelopmental movements show great promise for helping individuals of all ages overcome a large variety of challenges.
References

